Ghostscript Documentation
Release 10.04.0

Artifex

Sep 05, 2024






10

11

12

13

14

15

16

17

18

19

20

21

22

Introduction

News

Ghostscript Release Dates

Building from Source

Installing

Using

Information for Ghostscript Developers
API

The Core Library

Language Bindings

PostScript Language

Third Party Libraries

Details of Ghostscript Output Devices

High Level Devices

The Interface between Ghostscript and Device Drivers

Unsupported Devices

Sample CMYK 32-bit Device that Supports Post Rendering Processing

Guide to Ghostscript Source Code

Ghostscript C Coding Guidelines

Ghostscript PostScript Coding Guidelines

Ghostscript Enterprise

The GhostPDL Interpreter Framework

ABOUT

11

21

39

45
105
143
169
179
245
269
271
297
321
359
397
405
409
427
433

435




23 Convert PostScript to Encapsulated PostScript Interchange Format
24 PostScript Files Distributed with Ghostscript

25 Fonts and Font Facilities Supplied with Ghostscript

26 Ghostscript Color Management

27 Setting Up a Unix Ipr Filter for Ghostscript

445

447

455

463

489




Ghostscript Documentation, Release 10.04.0

ghostscript

Ghostscript is an interpreter for the PostScript® language and PDF files. It is available under either the GNU GPL
Affero license or licensed for commercial use from Artifex Software, Inc. It has been under active development for
over 30 years and has been ported to several different systems during this time. Ghostscript consists of a PostScript

interpreter layer and a graphics library.

ABOUT


https://en.wikipedia.org/wiki/PostScript
https://en.wikipedia.org/wiki/PDF
https://www.gnu.org/licenses/agpl-3.0.html
https://www.gnu.org/licenses/agpl-3.0.html
https://artifex.com/licensing/commercial?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
https://artifex.com/?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link

Ghostscript Documentation, Release 10.04.0

2 ABOUT



CHAPTER
ONE

INTRODUCTION

This document is a roadmap to the Ghostscript documentation. After looking through it, if you want to install
Ghostscript and not only use it, we recommend you read How fo install Ghostscript, and How to compile Ghostscript
from source code (which is necessary before installing it on Unix and VMS systems).

1.1 What is Ghostscript?

There are various products in the Ghostscript family; this document describes what they are, and how they are related.

1.1.1 Ghostscript

Ghostscript is an interpreter for PostScript® and Portable Document Format (PDF) files.

Ghostscript consists of a PostScript interpreter layer, and a graphics library. The graphics library is shared with all the
other products in the Ghostscript family, so all of these technologies are sometimes referred to as Ghostscript, rather
than the more correct GhostPDL.

Binaries for Ghostscript and (see below) GhostPDF (included in the Ghostscript binaries) for various systems can
be downloaded from ghostscript.com/download. The source can be found in both the Ghostscript and GhostPDL
downloads from the same site.

1.1.2 GhostPDF

Prior to release 9.55.0 GhostPDF was an interpreter for the PDF page description language built on top of Ghostscript,
and written in the PostScript programming language. From 9.55.0 onwards there is a new GhostPDF executable,
separate from Ghostscript and written in C rather than PostScript.

This new interpreter has also been integrated into Ghostscript itself, in order to preserve the PDF functionality of
that interpreter. For now, the old PostScript-based interpreter remains the default, but the new interpreter is built-in
alongside it.

The intention is that the new interpreter will replace the old one, which will be withdrawn.

It is possible to control which interpreter is used with the NEWPDF command-line switch. When this is false (the
current default) the old PostScript-based interpreter is used, when NEWPDF is true then the new C-based interpreter
is used.



http://www.ghostscript.com/download/?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link

Ghostscript Documentation, Release 10.04.0

1.1.3 GhostPDL

Historically, we’ve used GhostPDL as an umbrella term to encompass our entire line of products. We’ve now brought
all these disparate products together into a single package, called, appropriately enough, GhostPDL.

When running on a printer (or server) GhostPDL now automatically detects the type of data being fed to it and pro-
cesses it accordingly. The individual interpreters all plug into a top-level module that handles both automatic language
detection and Printer Job Language (PJL) based configuration.

The exact set of interpreters present in an installation can be tuned by the integrator for their specific product/use cases.

In addition to our existing PDL modules (PS, PDF, PCL, PXL, and XPS) we have now added new modules to handle
a range of common image formats. With these installed, GhostPDL will handle JPEGs (both JFIF and EXIF), PWGs,
TIFFs, PNGs, JBIG2s, and JPEG2000s.

GhostPDL is available both under the GNU Affero GPL license and for commercial licensing from Artifex.

The source code for GhostPDL can be found from ghostscript.com/download.

1.1.4 GhostPCL

GhostPCL is an interpreter for PCL™ and PXL files. This consists of an PCL/PXL interpreter hooked up to the
Ghostscript graphics library.

GhostPCL is available both under the GNU Affero GPL license and for commercial licensing from Artifex.

Binaries for GhostPCL for various systems can be downloaded from ghostscript.com/download. The source can be
found in the GhostPCL/GhostPDL downloads from the same site.

1.1.5 GhostXPS

GhostXPS is an interpreter for XPS (XML Paper Specfication) files. This consists of an XPS interpreter hooked up to
the Ghostscript graphics library.

GhostXPS is available both under the GNU Affero GPL license and for commercial licensing from Artifex.

Binaries for GhostXPS for various systems can be downloaded from ghostscript.com/download. The source can be
found in the GhostXPS/GhostPDL downloads from the same site.

1.1.6 Ghostscript Enterprise

Ghostscript Enterprise is a commercial version of GhostPDL which can also read and process a range of common
office documents, including Word, PowerPoint and Excel. Find out more in the Ghostscript Enterprise section.

1.1.7 URW++ Font Information

We rely on two sets of fonts for our products, both from URW++.

Firstly, there is a PostScript Language Level 2 font set (also required for PDF), in Type 1 font format. These are included
with Ghostscript and GhostPDL, and are distributed under the GNU GPLv2, with an exemption to allowing embedding
in PDF and PostScript files.

Secondly, there is the PCLS5 set, in TrueType format. These are required for GhostPCL and GhostPDL (since the latter
includes PCLS5 support).

4 Chapter 1. Introduction


http://www.gnu.org/licenses/agpl-3.0.htmll
https://artifex.com/licensing/commercial?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
https://artifex.com/?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
http://www.ghostscript.com/download/?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
http://www.gnu.org/licenses/agpl-3.0.htmll
https://artifex.com/licensing/commercial?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
https://artifex.com/?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
http://www.ghostscript.com/download/?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
http://www.gnu.org/licenses/agpl-3.0.htmll
https://artifex.com/licensing/commercial?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
https://artifex.com/?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
http://www.ghostscript.com/download/?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link

Ghostscript Documentation, Release 10.04.0

These PCL fonts are NOT FREE SOFTWARE and are NOT distributed under any GNU GPL/AGPL variant. They are,
instead, distributed under the AFPL license which prohibits commercial use. A copy of this license in included in the
GhostPDL source distribution.

1.2 Document roadmap by theme

1.2.1 What should | read if I'm a new user?
* How to use Ghostscript. This includes both a quickstart introduction to the command line version and more
extensive reference material.
¢ detailed information about specific devices that Ghostscript can use for output.
* more detailed information about how to use Ghostscript under Unix with 1pr as a filter for printing.

» for information about known problems or to report a new one, please visit bugs.ghostscript.com but remember
that free versions of Ghostscript come with with NO WARRANTY and NO SUPPORT.

1.2.2 GPL and commercial Ghostscript

GPL Ghostscript, Artifex Ghostscript and AFPL Ghostscript are different releases.
* additional information about GPL Ghostscript releases that is not relevant to commercial versions.

If you run into any questions, or if you are going to be using Ghostscript extensively, you should at least skim, and
probably eventually read:

* about the fonts distributed with Ghostscript, including how to add or replace fonts.
* adescription of the Ghostscript language, and its differences from the documented PostScript language.

e about the postscript files distributed with Ghostscript (other than fonts).

1.2.3 Before building Ghostscript

If you are going to compile Ghostscript from source, rather than just use an executable you got from somewhere, you
may want to read:

* How to build Ghostscript and install it.

1.2.4 What should I read if I'm not a new user?

If you have already used Ghostscript, when you receive a new release you should begin by reading this file, then:

* News, for incompatible changes and new features in the current release.

1.2. Document roadmap by theme 5


https://en.wikipedia.org/wiki/Aladdin_Free_Public_License
https://bugs.ghostscript.com
https://github.com/ArtifexSoftware/ghostpdl/blob/master/doc/COPYING

Ghostscript Documentation, Release 10.04.0

1.2.5 What if I'm a developer?

If you are going to do any development on or with Ghostscript at all, you should at least look at:
e the roadmap documentation for Ghostscript’s source files and architecture.

If you are going to write a new driver for Ghostscript, you should read:
* the guide to the Ghostscript source code.
* the interface between Ghostscript and device drivers.

If you are considering distributing GPL Ghostscript in conjunction with a commercial product, you should read the
license carefully, and you should also read:

¢ additional clarification of the circumstances under which Ghostscript can be distributed with a commercial prod-
uct.

If you intend to use Ghostscript in the form of a dynamic link library (DLL) under OS/2 or Microsoft Windows or in
the form of shared object under Linux, read:

* documentation on Ghostscript Interpreter API.

If you want to use Ghostscript as part of another program, as a callable PostScript language interpreter, and not as a
DLL or as a self-contained executable application, you should begin by reading:

* the source file imain.h, the documented API for Ghostscript not as a DLL.
or if you are going to use only the Ghostscript graphics library:

* about the structure of the Ghostscript library and its interfaces.

1.2.6 What if I'm writing documentation?

If you are editing or adding to Ghostscript’s existing documentation you should contact us on our Discord channel or
the gs-devel mailing list for guidance, links to those are on: www.ghostscript.com.

1.3 Presence on the World Wide Web

1.3.1 Ghostscript’s home page

Ghostscript has a home page on the World Wide Web with helpful information such as the FAQ (Frequently Asked
Questions):

www.ghostscript.com

1.3.2 Other material on the WWW

Much other material about Ghostscript is available on the World Wide Web, both as web pages and as archived Usenet
and mailing list discussions. Use the well-known search engines to find such material.

6 Chapter 1. Introduction


https://github.com/ArtifexSoftware/ghostpdl/blob/master/doc/COPYING
http://www.ghostscript.com/?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
http://www.ghostscript.com/?utm_source=rtd-ghostscript&utm_medium=rtd&utm_content=inline-link
https://discord.gg/TSpYGBW4eq

Ghostscript Documentation, Release 10.04.0

1.3. Presence on the World Wide Web 7



Ghostscript Documentation, Release 10.04.0

8 Chapter 1. Introduction



CHAPTER
TWO

NEWS




Ghostscript Documentation, Release 10.04.0

10 Chapter 2. News



CHAPTER
THREE

3.1 Version 10

Version 10.01.2 (2023-06-21)
Version 10.01.1 (2023-03-27)
Version 10.01.0 (2023-03-22)
Version 10.00.0 (2022-09-21)

3.2 Version 9

Version 9.56.1 (2022-04-04)
Version 9.56.0 (2022-03-29)
Version 9.55.0 (2021-09-27)
Version 9.54.0 (2021-03-19)
Version 9.53.3 (2020-10-01)
Version 9.52 (2020-03-19)
Version 9.50 (2019-10-15)
Version 9.27 (2019-04-03)
Version 9.26 (2018-11-20)
Version 9.25 (2018-09-13)
Version 9.24 (2018-09-03)
Version 9.23 (2018-03-21)
Version 9.22 (2017-10-04)
Version 9.21 (2017-03-16)
Version 9.20 (2016-09-26)
Version 9.19 (2016-03-23)
Version 9.18 (2015-09-23)
Version 9.16 (2015-03-30)
Version 9.15 (2014-09-22)

GHOSTSCRIPT RELEASE DATES

11



Ghostscript Documentation, Release 10.04.0

Version 9.14 (2014-03-26)
Version 9.10 (2013-08-27)
Version 9.09 (2013-08-21)
Version 9.07 (2013-02-14)
Version 9.06 (2012-07-31)
Version 9.05 (2012-02-08)
Version 9.04 (2011-08-05)
Version 9.02 (2011-03-30)
Version 9.01 (2011-02-07)
Version 9.00 (2010-09-14)

3.3 Version 8

Version 8.71 (2010-02-10)
Version 8.70 (2009-07-31)
Version 8.64 (2009-02-03)
Version 8.63 (2008-08-01)
Version 8.62 (2008-02-29)
Version 8.61 (2007-11-21)
Version 8.60 (2007-08-01)
Version 8.57 (2007-05-11)
Version 8.56 (2007-03-14)
Version 8.54 (2006-05-17)
Version 8.53 (2005-10-20)
Version 8.52 (2005-10-07)
Version 8.51 (2005-04-18)
Version 8.50 (2004-12-10)
Version 8.33 (2004-11-20)
Version 8.32 (2004-10-26)
Version 8.31 (2004-08-28)
Version 8.30 (2004-05-29)
Version 8.12 (2003-12-08)
Version 8.11 (2003-08-16)
Version 8.10 (2003-05-21)
Version 8.00 (2002-11-21)

12

Chapter 3. Ghostscript Release Dates



Ghostscript Documentation, Release 10.04.0

3.4 Version7

Version 7.33 (2002-11-18)
Version 7.32 (2002-11-02)
Version 7.31 (2002-10-17)
Version 7.30 (2002-09-07)
Version 7.22 (2002-08-06)
Version 7.21 (2002-07-08)
Version 7.20 (2002-04-03)
Version 7.03 (2001-10-20)
Version 7.02 (2001-09-22)
Version 7.00 (2001-04-08)

3.5 Version 6

Version 6.64 (2001-04-07)
Version 6.63 (2001-03-31)
Version 6.62 (2001-03-19)
Version 6.61 (2001-02-21)
Version 6.60 (2000-12-31)
Version 6.30 (2000-10-03)
Version 6.23 (2000-08-07)
Version 6.22 (2000-07-05)
Version 6.21 (2000-04-28)
Version 6.20 (2000-04-06)
Version 6.01 (2000-03-17)
Version 6.0 (2000-02-03)

3.6 Version 5

Version 5.99 (beta) (1999-12-18)
Version 5.98 (beta) (1999-12-01)
Version 5.97 (beta) (1999-11-22)
Version 5.96 (beta) (1999-11-12)
Version 5.95 (beta) (1999-11-01)
Version 5.94 (beta) (1999-09-30)
Version 5.93 (beta) (1999-09-11)

3.4. Version7

13



Ghostscript Documentation, Release 10.04.0

Version 5.92 (beta) (1999-09-02)
Version 5.91 (beta) (1999-08-30)
Version 5.90 (beta) (1999-08-20)
Version 5.88 (tester) (1999-08-03)
Version 5.87 (tester) (1999-06-29)
Version 5.86 (tester) (1999-06-14)
Version 5.85 (tester) (1999-05-29)
Version 5.84 (tester) (1999-05-19)
Version 5.83 (tester) (1999-05-13)
Version 5.82 (tester) (1999-04-24)
Version 5.81 (tester) (1999-04-14)
Version 5.80 (tester) (1999-04-06)
Version 5.73 (tester) (1999-03-19)
Version 5.72 (tester) (1999-03-17)
Version 5.71 (tester) (1999-03-03)
Version 5.70 (internal) (1999-02-20)
Version 5.69 (internal) (1999-02-04)
Version 5.68 (internal) (1999-01-29)
Version 5.67 (internal) (1999-01-08)
Version 5.66 (internal) (1998-11-25)
Version 5.65 (internal) (1998-11-13)
Version 5.64 (internal) (1998-11-05)
Version 5.63 (internal) (1998-11-04)
Version 5.62 (internal) (1998-10-31)
Version 5.61 (internal) (1998-10-28)
Version 5.60 (internal) (1998-10-18)
Version 5.50 (1998-09-16)

Version 5.40 (beta) (1998-09-10)
Version 5.39 (beta) (1998-09-08)
Version 5.38 (beta) (1998-09-03)
Version 5.37 (beta) (1998-08-31)
Version 5.36 (beta) (1998-08-25)
Version 5.35 (beta) (1998-08-18)
Version 5.34 (beta) (1998-08-16)
Version 5.33 (beta) (1998-08-14)
Version 5.32 (beta) (1998-08-13)

14

Chapter 3. Ghostscript Release Dates



Ghostscript Documentation, Release 10.04.0

Version 5.31 (limited) (1998-08-11)
Version 5.30 (limited) (1998-08-10)
Version 5.28 (limited) (1998-08-03)
Version 5.27 (limited) (1998-07-18)
Version 5.26 (limited) (1998-07-07)
Version 5.25 (limited) (1998-07-01)
Version 5.24 (limited) (1998-06-17)
Version 5.23 (limited) (1998-05-14)
Version 5.22 (limited) (1998-02-19)
Version 5.21 (limited) (1998-01-19)
Version 5.20 (limited) (1998-01-08)
Version 5.10 (1997-11-23)

Version 5.07 (limited) (1997-10-31)
Version 5.06 (limited) (1997-10-07)
Version 5.05 (limited) (1997-09-24)
Version 5.04 (limited) (1997-09-21)
Version 5.03 (1997-08-08)

Version 5.02 (1997-07-28)

Version 5.01 (1997-06-22)

Version 5.0 (1997-06-06)

3.7 Version 4

Version 4.81 (1997-06-01)

Version 4.80 (limited) (1997-05-28)
Version 4.74 (limited) (1997-05-05)
Version 4.73 (limited) (1997-04-19)
Version 4.72 (limited) (1997-04-14)
Version 4.71 (limited) (1997-03-31)
Version 4.70 (limited) (1997-03-26)
Version 4.61 (limited) (1997-03-13)
Version 4.60 (limited) (1997-03-02)
Version 4.51 (limited) (1997-02-09)
Version 4.50 (limited) (1997-01-31)
Version 4.41 (private) (1997-01-21)
Version 4.40 (private) (1997-01-13)

3.7. Version 4

15



Ghostscript Documentation, Release 10.04.0

Version 4.39 (limited) (1997-01-01)
Version 4.38 (limited) (1996-12-20)
Version 4.37 (limited) (1996-12-10)
Version 4.36 (limited) (1996-12-03)
Version 4.35 (limited) (1996-11-24)
Version 4.34 (limited) (1996-11-18)
Version 4.33 (limited) (1996-11-06)
Version 4.32 (limited) (1996-11-01)
Version 4.31 (limited) (1996-10-27)
Version 4.30 (limited) (1996-10-23)
Version 4.21 (limited) (1996-10-17)
Version 4.20 (limited) (1996-10-13)
Version 4.10 (limited) (1996-09-25)
Version 4.03 (1996-09-23)

Version 4.02 (1996-09-19)

Version 4.01 (1996-07-10)

Version 4.0 (1996-06-28)

3.8 Version 3

Version 3.70 patch 1 (1996-06-24)

Version 3.70 (limited) (1996-06-23)

Version 3.69 (limited) (1996-06-14)

Version 3.68 patch 4 (1996-05-23)

Version 3.68 patch 3 (1996-05-17)

Version 3.68 patch 2 (1996-05-13)

Version 3.68 patch 1 (1996-05-10)

Version 3.68 (limited) (1996-05-09)

Version 3.67 (limited) (1996-04-12)

Version 3.66 (limited) (1996-04-08)

Version 3.65 (limited) (1996-03-09)

Version 3.64 (limited, incremental) (1996-01-27)
Version 3.63 (limited, incremental) (1996-01-14)
Version 3.62 (limited, incremental) (1995-12-26)
Version 3.61 (limited) (1995-12-10)

Version 3.60 (limited) (1995-11-20)

16 Chapter 3. Ghostscript Release Dates



Ghostscript Documentation, Release 10.04.0

Version 3.53 (1996-01-10)*"
Version 3.52 (limited) (1995-10-06)
Version 3.51 (1995-09-27)

Version 3.50 (limited) (1995-09-24)
Version 3.49 (limited) (1995-09-20)
Version 3.48 (limited) (1995-09-17)
Version 3.47 (limited) (1995-09-14)
Version 3.46 (limited) (1995-09-04)
Version 3.45 (limited) (1995-08-27)
Version 3.44 (limited) (1995-08-21)
Version 3.43 (limited) (1995-08-10)
Version 3.42 (limited) (1995-08-02)
Version 3.41 (limited) (1995-07-27)
Version 3.40 (limited) (1995-06-28)
Version 3.39 (limited) (1995-06-24)
Version 3.38 (limited) (1995-06-18)
Version 3.37 (limited) (1995-05-11)
Version 3.36 (limited) (1995-05-04)
Version 3.35 (internal) (1995-05-02)
Version 3.34 (internal) (1995-04-18)
Version 3.33 (1995-04-13)

Version 3.32 (1995-04-07)

Version 3.31 (1995-04-02)

Version 3.30 (beta) (1995-03-21)
Version 3.29 (internal) (1995-03-08)
Version 3.28 (beta) (1995-02-13)

Version 3.27 (beta)(withdrawn) (1995-02-08)

Version 3.26 (beta) (1995-02-01)
Version 3.25 (beta) (1995-01-24)
Version 3.24 (beta) (1995-01-17)
Version 3.23 (beta) (1995-01-05)
Version 3.22 (beta) (1994-11-30)
Version 3.21 (beta) (1994-11-17)
Version 3.20 (beta) (1994-10-31)
Version 3.13 (private) (1994-10-03)

0 This is an anomalous, out-of-sequence release requested by a commercial licensee. It consists of 3.52 plus the following retrofits from 3.60

through 3.63

3.8. Version 3

17



Ghostscript Documentation, Release 10.04.0

Version 3.12 (1994-09-29)
Version 3.1.1 (1994-09-25)
Version 3.1 (1994-09-20)

Version 3.0.3 (1994-09-16)
Version 3.02 (1994-08-30)
Version 3.01 (1994-08-14)
Version 3.0 (1994-08-01)

3.9 Version 2

Version 2.9.10-beta (1994-07-28)

Version 2.9.9-beta (1994-06-23)

Version 2.9.8 (1994-06-20)

Version 2.9.7-beta (1994-06-05)

Version 2.9.6-beta (not distributed to the public) (1994-05-23)
Version 2.9.5-beta (1994-04-11)

Version 2.9.4-beta (1994-02-19)

Version 2.9.3-beta (1994-01-19)

Version 2.9.2-beta (1994-01-02)

Version 2.9.1-beta (1993-12-07)

Version 2.9-beta (1993-12-06)

Version 2.8-beta (1993-11-10)

Version 2.7.2-beta (1993-10-11)

Version 2.7.1-beta (not distributed to the public) (1993-10-04)
Version 2.7-beta (not distributed to the public) (1993-09-20)
Version 2.6.1 (1993-05-28)

Version 2.6 (1993-05-09)

Version 2.5.2 (1992-09-20)

Version 2.5.1 (1992-09-11)

Version 2.5 (1992-08-18)

Version 2.4.2 (1992-05-08)

Version 2.4.1 (1992-04-21)

Version 2.4 (1992-03-25)

Version 2.3 (1991-08-28)

Version 2.2 (1991-06-01)

Version 2.1.1 (1991-01-15)

18

Chapter 3. Ghostscript Release Dates



Ghostscript Documentation, Release 10.04.0

Version 2.1 (1990-12-31)
Version 2.0 (1990-09-12)

3.10 Version 1

Version 1.3 (1989-06-20)
Version 1.2 (1989-02-22)
Version 1.1 (1989-02-12)
Version 1.0 (1988-08-11)

3.10. Version 1

19


https://discord.gg/TSpYGBW4eq

Ghostscript Documentation, Release 10.04.0

20 Chapter 3. Ghostscript Release Dates



CHAPTER
FOUR

BUILDING FROM SOURCE

4.1 General overview

This document describes how to build a Ghostscript executable from source code. There are four major steps to building
Ghostscript:

1. Acquire the compressed archive files of source code for Ghostscript.

2. Unpack the archive files into the Ghostscript directory.

3. Configure the build to match your system and desired configuration options.
4. Invoke “make” to build the software.

The remainder of this document describes each of these steps in detail. Note that some of this process is platform-
dependent. After building Ghostscript you must then install it; for that, see the installation instructions.

Long term users of Ghostscript may notice the instructions for a number of older systems have been removed from this
document. There is no value judgment implied in this, but recognition that the build system has changed considerably
in recent years, and several of these legacy systems are no longer easily available to the development team. We will
always consider contributions to continue support for legacy systems.

4.2 Built libraries

The following Ghostscript libraries will be built for these respective platforms:

Platform Ghostscript library files
Windows 32-bit gpd1d1132.d11 gsd1132.d11
Windows 64-bit gpdldl164.d11 gsdl1l64.d11
MacOS libgpdl.dylib libgs.dylib
Linux / OpenBSD | libgpdl.so libgs.so

Note: The actual filenames on MacOS will be appended with the version of Ghostscript with associated symlinks.

21



Ghostscript Documentation, Release 10.04.0

4.3 How to acquire the source code

Building Ghostscript requires the Ghostscript source code itself, and in some cases the source code for the third-party
libraries that Ghostscript uses.

Official releases can be found under the AGPL license at:
https://ghostscript.com/download/

Ghostscript source code is packaged in gzip-compressed tar archives (*.tar.gz), e.g.:
ghostscript-#.##.tar.gz

(“#.##” are version numbers.)

Software to decompress and extract both formats is available for almost every platform for which Ghostscript is available
— including Unix, Linux, MS Windows, and so on — but it’s up to you to locate that software. See the section on
unpacking the source code.

Note: Unlike earlier versions, Ghostscript packages are now one, complete archive, including font files and third party
library dependency sources.

4.4 How to acquire the development source code

The Ghostscript team use git for version control.

If you require a snapshot of the development code, the easiest way to get it is to visit the web interface to our git
repository: ghostpdl.git and click the “snapshot” link next to the specific commit in which you are interested. After a
short delay, that will download a complete source tree for the given commit in a gzipped tar archive.

If you require access to several commits, or wish to regularly access the latest development code, you are better to clone
the entire git repository, using:

git clone git://git.ghostscript.com/ghostpdl.git

which will create a local, read-only repository.

Both the “snapshot” and the git clone methods download the Ghostscript sources as part of the GhostPDL source tree,
which includes the PCL/PXL and XPS interpreters also built on top of the Ghostscript graphics library.

The configure script discussed later in the document is created as part of the Ghostscript release process, and as the
source tree retrieved from git is “pre-release” code, it does not include a pre-made configure script. See autogen.sh.

4.5 How to unpack the source code

Unfortunately, there are no generally accepted standards for how to package source code into archives, so the instructions
for unpacking Ghostscript are longer than they should be. We begin with a brief explanation of how to extract the two
kinds of archive files.

22 Chapter 4. Building from Source



https://ghostscript.com/download/
http://git-scm.com/
http://git.ghostscript.com/?p=ghostpdl.git;a=summary

Ghostscript Documentation, Release 10.04.0

4.5.1 How to unpack compressed tar files generally

Tar (. tar) files are the de facto standard for archiving files on Unix (every Unix-like system has the tar program),
and programs to extract their contents are also widely available for MS Windows, and most other environments. To
economize on space and downloading time, Ghostscript’s tar files are compressed with GNU gzip, which adds the
suffix ““. gz” to the file name, giving “. tar.gz”.

To unpack a compressed tar file MyArchive.tar.gz you must both decompress it and extract the contents. You can
do this in two steps, one to decompress the file and another to unpack it:

gzip -d MyArchive.tar.gz
tar -xf MyArchive.tar

or in a pipeline:

gzip -d -c MyArchive.tar.gz | tar -xf -

or, if you have a program like GNU tar that can handle compressed tar files, with a single command:

tar -zxf MyArchive.tar.gz

The tar program automatically preserves directory structure in extracting files. The Ghostscript source archive puts
all files under a directory ghostscript-#.##, so using tar to unpack a compressed archive should always properly
create that directory, which we will call the “ghostscript directory”.

Some other programs — under MS Windows, for instance — can also unpack compressed tar files, but they may not
automatically preserve directory structure nor even extract files into the current directory. If you use one of these, you
must:

* set the program’s options to “Use folder names” (or the equivalent).
, and:
* check that it is extracting files into the right place.

As both tar and gzip formats are now well supported by several applications on MS Windows, we only supply the
tar.gz archive.

WinZip, 7-zip & Info-ZIP are respectively a commercial and two free applications which can decompress and extract
.tar.gz archives on MS Windows.

4.5.2 How to unpack Ghostscript itself

At this point you have acquired the source code and are ready to unpack it according to the preceding guidelines.

2-step:

gzip -d ghostscript-#.##.tar.gz
tar -xf ghostscript-#.##.tar

Pipe:

gzip -d -c ghostscript-#.##.tar.gz | tar -xf -

GNU tar:

tar -zxf ghostscript-#.##.tar.gz

All the Ghostscript source files are now in subdirectories of the ghostscript-#.## directory.

4.5. How to unpack the source code 23



http://www.winzip.com/
http://www.7-zip.org/
http://www.info-zip.org/

Ghostscript Documentation, Release 10.04.0

4.5.3 Ghostscript Core Source subdirectories

Subdirectory Contents

arch/ Pre-defined architecture header files

base/ Graphics library C source code and makefiles

contrib/ Community contributed/supported output devices

devices/ The output devices supported by the Ghostscript
team

psi/ PS interpreter C source code and makefiles

Resource/ Postscript initialization, resource and font files

lib/ PostScript utilities and scripts used with
Ghostscript

doc/ Documentation

man/ Unix man pages

examples/ Sample PostScript files

iccprofiles/ Default set of ICC profiles

windows/ Visual Studio for Windows specific project and
solution files

toolbin/ Useful (non-Postscript) tools, mostly for devel-
oper use only

Optionally, if you downloaded the GhostPDL archive, you may also have:

4.5.4 Additional GhostPDL source subdirectories

Subdirectory Contents

pcl/ PCL/PXL interpreter C source code, makefiles,
fonts etc.

xps/ XPS interpreter C source code and makefiles

Supporting third party libraries will also be in their own sub-directories (e.g. jpeg, freetype and so on).

4.6 How to check for post-release bug fixes

Bug information and fixes are tracked on Ghostscript Bugzilla.

4.7 How to prepare the makefiles

The Ghostscript makefiles are very large and complex in order to deal with the diverse requirements of all the different
systems where they may be used.

Ghostscript has an automatic configuration script. If you’re on unix or a system that supports unix shell scripts, this is
the easiest option to use. Simply type:

./configure

24 Chapter 4. Building from Source



http://bugs.ghostscript.com

Ghostscript Documentation, Release 10.04.0

from the top level of the Ghostscript source directory. It should configure itself based on what’s available on your
system, warn you of any missing dependencies, and generate a Makefile. At this point you can skip to the section
invoking make below. Also, many common configuration options (like install location) can be set through options to
the configure script.

Type ./configure --help for a complete listing. Note that the configuration option is only available with the unix
. tar distributions of the source.

Note: If you're building Ghostscript from development source out of a repository instead of from a released
source package, you should run . /autogen. sh instead of ./configure. This script takes all the same options that
configure does.

If your system doesn’t support the configure script or you don’t wish to use it, you can use the traditional Ghostscript
makefile system, editing the options by hand to match your system as described below. Fortunately, the only
makefiles you're likely to want to change are relatively small ones containing platform-specific information.

4.7.1 Platform-specific makefiles

The table below lists a number of platform independent makefiles in each of the core Ghostscript source directories.

Makefile Used for

Makefile.in Template makefile for the autoconf build.

psi/msvc.mak MS Windows with Microsoft Visual Studio 2003 and
later.

base/unix-gcc.mak Unix with gcc.

base/unixansi.mak Unix with ANSI C compilers other than gcc.

Since these files can change from one Ghostscript version to another, sometimes substantially, and since they all include
documentation for the various options, here we don’t duplicate most of that documentation: we recommend strongly
that you review the entire makefile specific for your operating system and compiler before building Ghostscript.

4.7.2 Changes for your environment
Assuming you have opted not to use the configure script or the default Microsoft Visual Studio bulid, you must edit
the platform-specific makefile to change any of these:

¢ The name of the makefile itself (MAKEFILE macro).

* The locations to install Ghostscript files (prefix etc.).

* The default search paths for the initialization and font files (GS_LIB_DEFAULT macro).

* The debugging options (DEBUG and TDEBUG macros).

* Which optional features to include (FEATURE_DEVS).

e Which device drivers to include (DEVICE_DEVS and DEVICE_DEVS{1--203} macros).

* Default resolution parameters for some printer drivers (devs.mak or contrib.mak, whichever defines the
driver).

In general these will be set to commonly sensible values already, but may not be ideal for your specific case.

The platform-specific makefiles include comments describing all these except the DEVICE_DEVS options. These are
described in devs.mak and contrib.mak, even though the file that must be edited to select them is the platform-
specific makefile.

4.7. How to prepare the makefiles 25



Ghostscript Documentation, Release 10.04.0

Some platform-specific options are described in the sections for individual platforms. See the “Options” section near
the beginning of the relevant makefile for more information.

4.7.3 Selecting features and devices

You may build Ghostscript with any of a variety of features and with any subset of the available device drivers. The
complete list of features is in a comment at the beginning of gs.mak, and the complete list of drivers in comments at
the beginning of devs.mak and contrib.mak. To find what devices a platform-specific makefile selects to include
in the executable, look in it for all lines of the form:

FEATURE_DEVS={1list of features}
DEVICE_DEVS*={list of devices}

For example, if the makefile has:

FEATURE_DEVS=$(PSD)level2.dev

indicating that only the PostScript Level 2 facilities should be included, you might make it:

FEATURE_DEVS=$(PSD)1level2.dev $(PSD)pdf.dev

to add the ability to interpret PDF files. (In fact, FEATURE_DEVS in the current Unix makefiles already includes
$(PSD)pdf.dev.).

It is extremely important that FEATURE_DEVS is set correctly. Currently, the default builds will include a complete
feature set, and as such most of those building Ghostscript will have no need to change it. Only those working in
heavily resource constrained environment will want to experiment, and it is vital that the implications of such changes
be understood, otherwise Ghostscript may behave in unexpected or apparently incorrect ways, or may even fail to build.

The Unix makefile also defines:

DEVICE_DEVS=$(DD)x11.dev

indicating that the X Windows driver should be included, but since platform-specific makefiles as distributed nor-
mally include many of the possible features and drivers, you will probably rather remove from the makefile the features
and drivers you don’t want. It does no harm to include unneeded features and devices, but the resulting executable will
be larger than needed.

You may edit the FEATURE_DEVS line to select or omit any of the features listed near the beginning of gs.mak, and the
DEVICE_DEVS* lines to select or omit any of the device drivers listed near the beginning of devs.mak and contrib.
mak. GS_DEV_DEFAULT is a string containing whitespace separate device names, and give the devices Ghostscript
should attempt to use (and the order) if no device is specified on the command line; see the usage documentation for
how to select an output device at run time using the -sDEVICE= switch. If you can’t fit all the devices on a single line,
you may add lines defining:

DEVICE_DEVS1=$(DD){devll}.dev ... $(DD){devin}.dev
DEVICE_DEVS2=$(DD){dev21}.dev ... $(DD){dev2n}.dev

etc., up to DEVICE_DEVS15. Don’t use continuation lines — on some platforms they don’t work.

Note: If you want to include a driver named xxx, you must put $ (DD)xxx.dev in DEVICE_DEVS¥*. Similarly, if you
want to include a feature related to the PostScript or PDF language interpreters (PostScript level 1 .. 3, or other language
features such as the ability to read EPSF files or TrueType font files), you must represent it as $ (PSD) xxx . dev.

26 Chapter 4. Building from Source




Ghostscript Documentation, Release 10.04.0

Precompiled run-time data

Ghostscript normally reads a number of external data files at run time: initialization files containing PostScript code,
fonts, and other resources such as halftones. By changing options in the top-level makefile for the platform, you can
cause some of these files to be compiled into the executable: this simplifies installation, improves security, may reduce
memory requirements, and may be essential if you are planning on putting Ghostscript into ROM. Compiling these
files into the executable also means the executable is (largely) self-contained, meaning initialization files, font files,
resource files and ICC profile files are certain to be available and accessible. In general, Ghostscript should initialize
more quickly, and files (especially PDF) files making heavy use of the built-in fonts will interpret more quickly.

For those distributing Ghostscript binaries, compiling those files into the executable has another implication, any site-
specific customizations (such as font and CIDFont substitutions) are slightly more complex to implement - see: How
Ghostscript finds files for how to influence where Ghostscript searches for files. Furthermore, if the files Ghostscript
uses are also required to be accessible by applications other than Ghostscript (the mostly case for this would be font files
and ICC profile files), having those files compiled into Ghostscript maybe suboptimal, essentially require two copies
of the file data to be distributed (one set built into Ghostscript, and the other as “normal” files accessible outside of
Ghostscript.

Compiling the initialization files (Resource/Init/gs_init.ps, etc.) into the executable is the default. To disable
this, change the 1 to a 0 in the line:

COMPILE_INITS=1

Or, if you use the configure based Unix-style build, you can disable COMPILE_INITS by adding the option
--disable-compile-inits to the invocation of configure

Files are now compiled into the executable as a %rom¥% file system that can be searched, opened, etc. as with the normal
(%os%) file system. The data is (mostly) compressed. Several of the initialisation files (those in Resource/Init) are
also converted to binary Postscript encoding, and “merged” into a single monolithic file - this is done for both size and
speed optimization. Files that are often customized for individual installations (such as Fontmap and cidfmap) are not
merged into the single file and thus installation specific versions can be used.

The set of files built into the %rom¥% file system is specified in the psi/psromfs.mak file. By default the set of files
built into the rom file system comprises all the resource files Ghostscript requires to run successfully (all the files under
Resource directory, and those under the iccprofiles directory). Refer to the file base/mkromfs . c for a description
of the parameters that control source and destination pathnames, file enumeration exclusion, compression, etc.

Fonts normally are compiled into the executable using mkromfs (above) from the Resource/Font/ directory.

Similarly, Halftone resources can be compiled into the executable using mkromfs, but also threshold-array halftones can
be compiled into the executable. See the “Compiled halftone” section of int.mak for a sample makefile fragment,
genht . c for the syntax of halftone data files, and 1ib/ht_ccsto.ps for a sample data file. Note that even though the
data files use PostScript syntax, compiled halftones do not require the PostScript interpreter and may be used with the
graphics library alone.

4.7.4 Setting up “makefile”

After going through the steps just described to unpack the sources, configure the build and make any desired changes
to the makefiles. As the final step in preparing to build Ghostscript you must usually associate the name “makefile”
with the correct makefile for your environment so the make command can find it. See the section on your particular
platform for how to do that if necessary.

On unix systems, ./configure (or if checked out of git, . /autogen. sh) should create a Makefile which works in
most scenarios. Manual tampering and editing should rarely be needed nor recommended.

4.7. How to prepare the makefiles 27




Ghostscript Documentation, Release 10.04.0

4.7.5 Invoking “make”

make

make

make

make

make

make

make

make

make

make

make

Builds Ghostscript without debugging options.

debug

Builds Ghostscript with debugging options and additional internal error checks. The program will be somewhat
larger and slower, but it will behave no differently unless you actually turn on debugging options at execution
time with the -DDEBUG or -Z command line switches described in the usage documentation.

P9
On Unix platforms, builds with the -pg compiler switch, creating an executable for time profiling.

install
After building, installs the Ghostscript executables, support files, and documentation, but does not install fonts.
See the installation documentation.

(debug)clean
Deletes all the files created by the build process (relocatables, executables, and miscellaneous temporary files).
If you’ve built an executable and want to save it, move it first to another place, because “make clean” deletes it.

so
On some platforms (Linux, *BSD, Darwin/Mac OS X, SunOS), it is possible to build Ghostscript as a shared
object library. There is a corresponding make soclean for cleaning up.

sanitize

Builds Ghostscript with AddressSanitizer. Output is placed in . /sanbin.

libgs

Builds static library for Ghostscript.

libgpcl6

Builds static library for GhostPCL. Requires the full ghostpdl source release.

libgxps

Builds static library for GhostXPS. Requires the full ghostpdl source release.

libgpdl
Builds static library for GhostPDL. Requires the full ghostpdl source release.

Note:

On some platforms aspects of these simple instructions don’t quite work in one way or another. Read the section
on your specific platform.

If you are attempting to build a statically linked executable, you will probably need to add libraries to the linker
options (libraries that are normally pulled-in automatically by the dynamic linker). These can be added at the
make command line using the EXTRALIBS= option. Unfortunately, the set of libraries that may be required varies
greatly depending on platform and configuration, so it is not practical to offer a list here.

28

Chapter 4. Building from Source


http://git.ghostscript.com/?p=ghostpdl.git;a=summary
http://git.ghostscript.com/?p=ghostpdl.git;a=summary
http://git.ghostscript.com/?p=ghostpdl.git;a=summary

Ghostscript Documentation, Release 10.04.0

4.7.6 Cross-compiling

Cross-compiling is not fully supported by the configure script (such support is a work-in-progress).

You can either use base/unixansi.mak or unix-gcc.mak as the basis for a cross-compile makefile, or use config-
ure to create a basic Makefile as the basis. And modify to suit.

You can set the compiler to your cross-compiler for configure by doing:

./configure CC=<cross-compiler executable>

and configure will then run its checks (as best it can) with the cross-compiler.

If you do so, you should also give configure the option to set the target architecture endianness: --enable-big-endian
or --enable-little-endian.

It would also be wise to review the settings shown in the output of ./configure --help for any that would be
applicable to your target.

The Ghostscript build system uses several interim executables, built and run on the host, as such, even when cross-
compiling, a host native compiler is also required. You must edit your makefile to ensure that is available. Find the
line that starts:

CCAUX=

and set that to your host compiler.

If you did not use configure or did not set the CC variable for configure, you must also set the:
CC=

to your cross-compiler.

The Ghostscript build system uses a utility called genarch (see base/genarch. c for details) to interrogate the envi-
ronment and generate a header file describing the architecture for which Ghostscript is being built. As this is run on
the host it will generate header for the host architecture rather than that of the target.

For cross compiling, you must create (or modify) a header file (arch.h) which accurately describes the target
architecture. Then you must edit your makefile by finding the line:

TARGET_ARCH_FILE=

and set it to the path to, and file name of your custom arch.h file. With that setting, genarch will still be run, but
rather than interrogate the current environment, it will copy the contents of your custom arch.h to the build.

4.8 How to build Ghostscript from source (PC version)

All Ghostscript builds in PC (DOS and MS Windows) environments are 32- or 64-bit: 16-bit builds are not supported.
The relevant makefiles are:

Makefile Construction tools For environment
msvc.mak Microsoft Visual Studio .NET 2003 (or later) | MS Windows 32/64-bit
Makefile.in Cygwin/gcc Cygwin (Use Unix configure)

Ghostscript requires at least MS Windows 95 (although we no longer actively test nor support Win95, we have not
deliberately done anything to break compatibility with it). We recommend at least MS Windows NT 4.0.

4.8. How to build Ghostscript from source (PC version) 29




Ghostscript Documentation, Release 10.04.0

For building, Ghostscript requires at least Visual Studio .NET 2003, and we recommend at least Visual Studio 2019.
It can probably be made to work with earlier versions, though at least VS2005 will be required for 64 bit Windows
support.

Note: The make program supplied with Visual Studio (and earlier Visual C++ versions) is actually called nmake. We
refer to this program generically as make everywhere else in this document.

You must have cmd. exe in your path to build Ghostscript (using the Visual Studio command prompt is ideal). After
making any changes required to choose features and devices to build into the executable, you can then invoke make to
build the executable.

4.8.1 Microsoft Visual Studio

Using Microsoft Visual Studio

To build the required DLLs, load /windows/ghostpdl.sln into Visual Studio, and select the required architecture
from the drop down - then right click on ‘ghostpdl’ in the solution explorer and choose “Build”.

Further details

The Ghostscript source distribution ships with project and solution files for Visual Studio 2015 and later. These
can be found in the windows directory. The project(s) are nmake projects which means that rather than Visual
Studio controlling the build directly, it delegates the build process to the nmake.

Beyond lacking support for parallel builds (nmake cannot support parallel builds), there should be little visible differ-
ence between a conventional VS project and an nmake project to the user of the VS graphical interface. The only
exception to that is if you have to make changes to build options beyond those available in the defined build configura-
tions. In that case, you need to find the Nmake tab in the project Property Pages and modify the appropriate entry:
Build Command Line, Rebuild All Command Line and/or Clean Command Line.

As mentioned above, nmake does not support parallel builds. If you have downloaded and are building the GhostPDL
source archive (which contains Ghostscript, GhostPCL, GhostXPS, and GhostPDL “products”), the GhostPDL. s1n
contains individual projects for each product but, as a result of the limitations of nmake the products cannot be built in
parallel, because nmake 's lack of parallel build awareness means it cannot manage the dependencies shared between
the products, and may fail as multiple builds attempt to access the same dependencies.

To build all the products in one action, use the A11 “pseudo-project”. The A1l project uses a single nmake invocation
to build all the supported products.

Note: Changing the Output property in the Nmake properties will not change the name of the executable - to do that
requires editing of the psi/msvc.mak makefile, or you can add: GS=myname . exe to the nmake command line.

30 Chapter 4. Building from Source



Ghostscript Documentation, Release 10.04.0

Using the command line

Ghostscript can be made using the Windows command prompt or one of the various command line shells made for
Windows, as long as the command line syntax is compatible with the Windows CMD. exe. The Visual Studio command
prompt is ideal.

In order for the makefiles to work properly, two items may have to be changed. An attempt is made to select the correct
version of Microsoft Visual C++ based on the version of nmake. If this doesn’t work it will default to version 6.x. If the
auto-detection does not work, and you are not using version 6.x then before building, in psi\msvc.mak find the line
#MSVC_VERSION=6 and change it to MSVC_VERSION=4, MSVC_VERSION=5, MSVC_VERSION=7 or MSVC_VERSION=8
and so on.

In some cases the location of the Microsoft Developer Studio, needs to be changed. The location of Microsoft Developer
Studio is defined by the value of DEVSTUDIO. There are several different definitions of DEVSTUDIO in psi\msvc.mak.
There is one for each of the currently supported versions of Microsoft Visual C++ (4, 5, 6, 7, 7.1 and 8).

The normal installation process for Microsoft Visual C++ includes setting the location of the Microsoft Visual C++
executables (cl.exe, link.exe, nmake. exe, rc.exe) in your PATH definition and the LIB and INCLUDE environment
variables are set to point to the Microsoft Visual C++ directories. If this is true then the value for DEVSTUDIO can be
changed to empty, i.e. DEVSTUDIO=

If PATH, LIB, and INCLUDE are not correctly set then the value for DEVSTUDIO needs to be defined. For example,
for version 6.0, the default definition for the location for the Microsoft Developer Studio is: DEVSTUDIO=C: \Program
Files\Microsoft Visual Studio If the path to Microsoft Developer Studio on your system differs from the default
then change the appropriate definition of DEVSTUDIO. (Remember that there is a separate definition of DEVSTUDIO for
each version of MSVC, so be sure to change the correct definition.)

To run the make program, give the command:

nmake -f psi\msvc.mak

Rather than changing psi/msvc.mak, these values can also be specified on the make command line, i.e.

nmake -f psi\msvc.mak MSVC_VERSION=6 DEVSTUDIO="C:\Program Files\Microsoft Visual Studio"
nmake -f psi\msvc.mak MSVC_VERSION=7 DEVSTUDIO="C:\Program Files\Microsoft Visual Studio.
—.NET"

Note that double quotes have been added around the path for DEVSTUDIO due to the spaces in the path value.
This command line can also be put into a batch file.

You may get warning messages during compilation about various undefined and/or unsupported switches - this is
because the compiler switches are set in the makefiles, and are applied when building with all versions of Visual
Studio, but not all options are supported (or required) by all versions of Visual Studio. These warnings are benign and
can be ignored.

4.8.2 Microsoft Environment for 64-bit
Building Ghostscript for 64-bit Windows (AMD64 processor) requires Microsoft Visual Studio .NET 2005 or Microsoft
Visual Studio 2008 or later on 64-bit Windows. Cross compiling on 32-bit Windows is possible.

Compiling for 64-bit is similar to the Microsoft Environment instructions above, but with the addition of a WIN64
define.

To make Ghostscript use:

nmake -f psi/msvc.mak WIN64=

4.8. How to build Ghostscript from source (PC version) 31




Ghostscript Documentation, Release 10.04.0

Making self-extracting installers

You can build self-extracting Windows installers based on NSIS (Nullsoft Scriptable Install System). To do so, use the
nsis makefile target as well as any other options, for example:

nmake -f psi/msvc.mak WIN64= nsis

will create an nsis based installer for Ghostscript built for 64 bit Windows systems.

4.8.3 Microsoft Environment for WinRT

Ghostscript can be built in the form of a win32 DLL for use within a Windows Runtime application or Windows
Runtime component. Building for WinRT requires use of Microsoft Visual Studio 2012. There is a solution file that
can be loaded into VS 2012, in the directory winrt.

The WinRT application or component should include iapi.h from gs/psi and link with gsd1132metro.1lib from
gs/debugbin or gs/releasebin. Also any app using Ghostscript either directly or via a component should add
gsdll32metro.dll as “content”. This inclusion of the dll is necessary so that it will be packaged with the app. If
one wishes to be able to run the debugger on Ghostscript then gsd1132metro.pdb should also be added as content.

4.8.4 Cygwin32 gcc

It is possible to compile Ghostscript for MS Windows using the Cygwin32 gcc compiler, GNU make, using the “con-
figure” generated Makefile.

Information about this compiler and environment is at the Cygwin site.

MSys/Mingw

The configure build can be used to build Ghostscript on MSys/Mingw systems, but with a caveat. The msys-dvlpr
adds header files into the compiler’s header search paths which cause a clash, and the build will fail as a result. If you
have the msys-dvlpr package installed, and until a better solution is available you can work around this by temporarily
renaming the \mingw\msys\1.0\include directory so those headers are no longer found by the compiler.

4.9 How to build Ghostscript from source (MacOS version)

4.9.1 MacOS X

The unix source distribution (.tar.gz) builds fine on Darwin/MacOS X, albeit without a display device. You can
generally just use the Makefile generated by configure as your top-level makefile and get a reasonable default build.
This will allow you to use Ghostscript from the command line as a BSD-layer tool to rasterize postscript and pdf to
image files, and convert between the high-level formats supported by Ghostscript. See the instructions for the unix
build below for details of how to customize this build.

Note: If you have MacPorts installed, it can “confuse” the configure script because it includes some librares which
duplicate the “system” ones. This can cause missing symbol link errors. In order to resolve this, you can do:
LDFLAGS="-L/usr/1lib" ./configure. That will force the linker to search the default directory first, and thus
pick up the system libraries first.

32 Chapter 4. Building from Source



http://www.cygwin.com/
http://www.macports.org/

Ghostscript Documentation, Release 10.04.0

It is also possible to build “universal binaries” for MacOS X, containing i386 and x86_64 binaries in one file, using
the Makefile from configure. This can be achieved by using the following invocation of configure:

./configure CC="gcc -arch 1386 -arch x86_64 -arch ppc" CPP="gcc -E"

You can choose the combination of valid architectures (i386/x86_64/ppc) that you require.

The separate options for CC and CPP are required because some of the features used by configure to explore the capa-
bilities of the preprocessor are not compatible with having multiple -arch options.

Building a shared library on MacOS X is the same as for other Unix-like systems, the “configure” step is done normally,
and the “so” target is given to the make invocation, thus:

make so

The only difference compared to other Unix-like systems is that on OS X the resulting shared library is created with
the “.dylib” file name extension, instead of the more usual “.so0”.

4.10 How to build Ghostscript from source (Unix version)

Ghostscript now ships with a build system for unix-like operating systems based on GNU Autoconf. In general the
following should work to configure and build Ghostscript:

./configure
make

or

./configure
make so

for building Ghostscript as a shared library.
Please report any problems with this method on your system as a bug.

On modern unix systems, ./configure should create a Makefile which works in most scenarios. Manual tempering
and editing should rarely be needed nor recommended.

Note: If you're building Ghostscript from development source out of a repository instead of from a released
source package, you should run . /autogen. sh instead of ./configure. This script takes all the same options that
configure does.

(deprecated; see Autoconf-based method above) For the convenience of those already familiar with Ghostscript, the
old method based on hand-edited makefiles is still possible but no longer supported (and in many cases, simply do
not work without substantial expert manual-editing effort). It may also be helpful in getting Ghostscript to build on
very old platforms. The rest of this section deals exclusively with that older method and includes numerous pointers
regarding legacy systems.

(deprecated; see Autoconf-based method above) Before issuing the make command to build Ghostscript, you have to
make some choices, for instance:

* Which compiler to 